ಅಯೂಕ್ಲಿಡೀಯ ಜ್ಯಾಮಿತಿ

ವಿಕಿಪೀಡಿಯದಿಂದ, ಇದು ಮುಕ್ತ ಹಾಗೂ ಸ್ವತಂತ್ರ ವಿಶ್ವಕೋಶ
ಜ್ಯಾಮಿತಿಯ ಮೂರು ವಿಧಗಳಲ್ಲಿನ ಪ್ರತಿಯೊಂದರಲ್ಲಿ ಸಾಮಾನ್ಯ ಲಂಬರೇಖೆಯಿರುವ ರೇಖೆಗಳ ವರ್ತನೆ

ಯೂಕ್ಲಿಡೀಯ ಜ್ಯಾಮಿತಿ ವಿಭಾಗದ ಒಂದು ಅಥವಾ ಹೆಚ್ಚಿನ ಆದ್ಯುಕ್ತಿಗಳನ್ನು (ಆಕ್ಸಿಯಮ್ಸ್) ಬದಲಾಯಿಸಿಯೊ ಇಲ್ಲವೆ ತೊರೆದೊ ನಿರೂಪಿತವಾಗಿರುವ ಜ್ಯಾಮಿತಿಯ ಅಧ್ಯಯನ ಅಯೂಕ್ಲೀಡೀಯ ಜ್ಯಾಮಿತಿ (ನಾನ್‌ಯೂಕ್ಲೀಡಿಯನ್ ಜ್ಯಾಮಿಟ್ರಿ). ಇದನ್ನು ಯೂಕ್ಲಿಡೇತರ ಜ್ಯಾಮಿತಿ ಎಂದೂ ಕರೆಯುವುದಿದೆ.

ಇತಿಹಾಸ[ಬದಲಾಯಿಸಿ]

ಜ್ಯಾಮಿತಿಯ ಮೂಲಾಧಾರಗಳಲ್ಲಿ ಸಮಾಂತರ ರೇಖೆಗಳಿಗೆ ಸಂಬಂಧಿಸಿದ ಯೂಕ್ಲಿಡಿನ 5ನೆಯ ಅಭಿಗೃಹೀತ ಒಂದು ಕಳಂಕ ಇಲ್ಲವೆ ಒಂದು ತೊಡಕು ಎಂಬುದಾಗಿಯೇ ಕಂಡುಬಂತು. ಪ್ಲೇಫೇರನ ಉಕ್ತಿಯಲ್ಲಿ ಕಾಣಬರುವ m ರೇಖೆ l ನ್ನು ಎಷ್ಟು ದೂರ ವೃದ್ಧಿಸಿದರೂ ಸಂಧಿಸುವುದಿಲ್ಲ ಎಂಬ ನಿರೂಪಣೆಯಿಂದ ಅನಂತದೂರದಲ್ಲಿಯೂ ಅವು ಸಂಧಿಸುವುದಿಲ್ಲ ಎಂದಂತಾಯಿತು. ಆದರೆ ಅನಂತದೂರವು ಅನುಭವದ ಅವಗಾಹನೆಗೆ ದೊರೆಯುವಂತಿಲ್ಲವಾದ್ದರಿಂದ ಅಲ್ಲಿ ಏನಾಗುವುದೆಂದು ಹೇಳುವುದು ತಾನೆ ಹೇಗೆ? ಹೀಗಾಗಿ, ಹದಿನೆಂಟನೆಯ ಶತಮಾನದ ವೇಳೆಗೆ ಕೆಲವರು ಅನ್ಯಮಾರ್ಗವನ್ನೇ ಹಿಡಿದರು. ಈ ಸಮಾಂತರ ಅಭಿಗೃಹೀತವನ್ನು (ಪ್ಯಾರಲಲ್ ಪ್ಯಾಶ್ಚುಲೇಟ್) ತಾರ್ಕಿಕವಾಗಿ ಉಳಿದ ಮೂಲಾಧಾರ ಹಾಗೂ ವ್ಯಾಖ್ಯೆಗಳಿಂದ ಸಾಧಿಸಬಹುದೇನೋ ಎಂದು ಅವರು ಯೋಚಿಸಿದರು. ಇಂಥವರಲ್ಲಿ ಪ್ರಮುಖವಾದ ಗೆರೊಲಾಮೋ ಸಚ್ಚೇರಿ (1667-1733) ಯೂಕ್ಲಿಡನ 5ನೆಯ ಅಭಿಗೃಹೀತಕ್ಕೆ ಒಂದು ಪಕ್ಷದಲ್ಲಿ ವಿರುದ್ಧವಾಗಿ ದತ್ತಬಿಂದು P ಯಿಂದ l ರೇಖೆಗೆ ಸಮಾಂತರವಾಗಿ ಒಂದು ರೇಖೆಯೂ ಇರುವುದಿಲ್ಲವೆಂದೂ, ಇನ್ನೊಂದು ಪಕ್ಷದಲ್ಲಿ ಅಂಥ ರೇಖೆಗಳು ಒಂದಕ್ಕಿಂತ ಹೆಚ್ಚು ಇರುತ್ತವೆಂದೂ ಬದಲಾಯಿಸಿಕೊಂಡು ತಾರ್ಕಿಕ ನಿಗಮನ ವಿಧಾನದಿಂದ ಅನೇಕ ಪ್ರಮೇಯಗಳನ್ನು ಸಾಧಿಸಿ, ಬೇರೆ ಬೇರೆ ಬಗೆಯ ಜ್ಯಾಮಿತಿಗಳನ್ನು ರಚಿಸತೊಡಗಿದ.[೧] ಆದರೆ ಸಚ್ಚೇರಿಯ ಉದ್ದೇಶವೇ ಬೇರೆ ಇತ್ತು. ತಾರ್ಕಿಕ ನಿಗಮನದಿಂದ ದೊರೆತ ಫಲಗಳಲ್ಲಿ ಪರಸ್ಪರ ವಿರೋಧಾಭಾಸಗಳು ಏಳಬಹುದೆಂದೂ ಅದರಿಂದಾಗಿ ತಾನು ಊಹಾಪೋಹವಾಗಿ ತೆಗೆದುಕೊಂಡಿದ್ದ ಎರಡೂ ಸಂದರ್ಭಗಳು ಅಸಹಜವೆಂದೂ ತೀರ್ಮಾನಿಸಿ ತನ್ಮೂಲಕ ಪರೋಕ್ಷವಾಗಿ ಐದನೆಯ ಅಭಿಗೃಹೀತವನ್ನು ಸಾಧಿಸಿಕೊಟ್ಟಂತಾಗುವುದೆಂದು ಆಶಿಸಿದ್ದ ಸಚ್ಚೇರಿಗೆ ಎರಡು ಸಂದರ್ಭಗಳಲ್ಲೂ ಯಾವ ಒಂದು ವಿರೋಧಾಭಾಸವೂ ದೊರೆಯಲಿಲ್ಲ. ಆದರೆ ಯೂಕ್ಲಿಡೀಯ ಜ್ಯಾಮಿತಿಗೆ ಹೋಲಿಸಿದರೆ, ಬಲು ವಿಚಿತ್ರವಾಗಿ ಕಾಣುವಂಥ ಅನೇಕ ಪ್ರಮೇಯಗಳನ್ನು ಸಚ್ಚೇರಿ ಸಾಧಿಸಿದ. ಯೂಕ್ಲಿಡೀಯ ಅಭಿಗೃಹೀತಗಳಿಗೆ ವಿರುದ್ಧವಾಗಿ ಊಹೆಗಳಿಂದ ಸಿದ್ಧಿಸಿದ ಪ್ರಮೇಯಗಳ ವೈಚಿತ್ರ್ಯದ ದೆಸೆಯಿಂದ ಭ್ರಮೆಗೊಂಡ ಈತ ಕೊನೆ ಕೊನೆಯಲ್ಲಿ ತಾರ್ಕಿಕ ಬಿಗಿಯನ್ನು ಸ್ವಲ್ಪ ಸಡಿಲಿಸಿ, ವಿರೋಧಾಭಾಸಗಳು ಉಂಟಾದುವೆಂದೂ ಹೇಳಿ ತನ್ಮೂಲಕ ಯೂಕ್ಲಿಡೀಯ ಸಮಾಂತರ ಭಾವನೆಯನ್ನು ಸಾಧಿಸಿದನೆಂದೂ ಭ್ರಾಂತಿಗೊಂಡ. ಆದರೆ ವಾಸ್ತವವಾಗಿ ಈತ ಸಾಧಿಸಿದ ಪ್ರಮೇಯಗಳು ಅಯೂಕ್ಲೀಡಿಯ ಜಾಮಿತಿಯ ಮೂಲರೂಪ ಆಗಿತ್ತು.[೨][೧] ಇದು ಮೊದಲಿಗೆ ಮನಸ್ಸಿಗೆ ಹೊಳೆದಿರಲಿಲ್ಲ. ಇದಾದ ಬಳಿಕ ಇದೇ ಕ್ಷೇತ್ರದಲ್ಲಿ ಅಧ್ಯಯನ ನಡೆಸಿ ಶ್ರಮಿಸಿದವರ ಪೈಕಿ ಯೋಹಾನ್ ಹೈನ್ರಿಕ್ ಲ್ಯಾಂಬರ್ಟ್ (1728-77) ಮತ್ತು ಆಡ್ರಿಯನ್ ಮೇರಿ ಲೆಜೆಂಡ್ರೆ (1752-1831) ಇವರು ಪ್ರಮುಖರು. ಯೂಕ್ಲಿಡೀಯ ಸಮಾಂತರ ಅಭಿಗೃಹೀತ ಎಂದರೆ ದತ್ತ ಸರಳರೇಖೆಗೆ ಸಮಾಂತರವಾಗಿ ಅದರ ಮೇಲಿಲ್ಲದ ಯಾವ ಬಿಂದುವಿನಿಂದಲೂ ಒಂದೇ ಒಂದು ಸರಳ ರೇಖೆಯಿರುತ್ತದೆ ಎಂಬ ತತ್ತ್ವವೂ, ಅಯೂಕ್ಲಿಡೀಯ ಅಭಿಗೃಹೀತಗಳಾದ ಅನೇಕ ಸಮಾಂತರಗಳಿರುತ್ತವೆ ಅಥವಾ ಒಂದೂ ಸಮಾಂತರವಿರುವುದಿಲ್ಲ ಎನ್ನುವ ಅನೇಕ ತತ್ತ್ವಗಳೂ ಪರಸ್ಪರ ಸ್ವತಂತ್ರ, ಒಂದು ಉಳಿದ ಎರಡರ ಮೇಲೆ ಆಧಾರಿತವಾಗಿಲ್ಲ ಎಂಬ ವಿಷಯ ಮನದಟ್ಟಾದರೂ ಆ ಕಾಲದಲ್ಲಿ ಪರಸ್ಪರ ಸ್ವತಂತ್ರವಾಗಿ ಸಂಶೋಧನೆ ಮಾಡುತ್ತಿದ್ದ ಮೂರು ಮಂದಿ ಪ್ರಸಿದ್ಧ ಗಣತವಿದರು ಇದನ್ನು ಸಾಬೀತುಪಡಿಸಿದರು. ಮೊದಲನೆಯವ ಕಾರ್ಲ್ ಫ್ರೀಡ್‌ರಿಕ್ ಗೌಸ್ (1777-1855), ಗಾಟಿಂಗೆನ್ನಿನಲ್ಲಿ ಪ್ರಾಧ್ಯಾಪಕನಾಗಿದ್ದ. ಈತ ತನ್ನ ಕಾಲದಲ್ಲಿ ಗಣಿತಶಾಸ್ತ್ರಜ್ಞರ ಅರಸುಪುತ್ರ ಎಂದು ಕೀರ್ತಿ ಪಡೆದಿದ್ದ. ಈತ ಯೂಕ್ಲಿಡನ ಐದನೆಯ ಸಮಾಂತರ ಅಭಿಗೃಹೀತಕ್ಕೆ ಪ್ರತಿಯಾಗಿ ದತ್ತ ಬಿಂದುವಿನ ಮೂಲಕ, ಅದರ ಮೇಲೆ ಹಾದುಹೋಗದ ದತ್ತ ಸರಳರೇಖೆಗೆ ಎರಡು ಸಮಾಂತರ ರೇಖೆಗಳಿರುತ್ತವೆ ಎಂದು ಭಾವಿಸಿ ಉಳಿದ ಎಲ್ಲ ಅಭಿಗೃಹೀತಗಳನ್ನು ಯೂಕ್ಲಿಡ್‌ನಲ್ಲಿರುವಂತೆಯೇ ಇರಿಸಿಕೊಂಡು ತರ್ಕಬದ್ಧವಾಗಿ ಪ್ರಮೇಯ ಹಾಗೂ ಉಪಪ್ರಮೇಯಾದಿಯಾಗಿ ಸಾಂಗೋಪಾಂಗವಾದ ಗಣಿತರಚನೆಯನ್ನು ಯಾವುದೇ ವಿರೋಧಾಭಾಸವೂ ತಲೆದೋರದಂತೆ ನಿರ್ಮಿಸಿದ. ದೊರೆತ ಪ್ರಮೇಯಗಳು ವಿಚಿತ್ರವಾಗಿಯೂ ಅನುಭವಕ್ಕೆ ವಿರುದ್ಧವಾಗಿಯೂ ಇದ್ದರೂ ಪರಸ್ಪರ ತಾರ್ಕಿಕ ವಿರೋಧಗಳು ಉದ್ಭವಿಸಿರಲಿಲ್ಲ. ಉದಾಹರಣೆಗೆ ಈ ಬಗೆಯ ಅಯೂಕ್ಲಿಡೀಯ ಜ್ಯಾಮಿತಿಯಲ್ಲಿ ಒಂದು ತ್ರಿಕೋನದ ಮೂರು ಒಳಕೋನಗಳ ಮೊತ್ತವು ಎರಡು ಲಂಬಕೋನಗಳಿಗಿಂತ ಕಡಿಮೆ (ಯೂಕ್ಲಿಡೀಯ ಜ್ಯಾಮಿತಿಯಲ್ಲಿ ಇದು ಎರಡು ಲಂಬಕೋನಗಳಿಗೆ ಸಮ). ಹೀಗೆ ಒಂದು ಬಗೆಯ ಅಯೂಕ್ಲಿಡೀಯ ರೇಖಾಗಣಿತಕ್ಕೆ ಗೌಸ್ ತಳಹದಿ ಹಾಕಿದ. ಆದರೆ ಯೂಕ್ಲಿಡನ ಜ್ಯಾಮಿತಿಯಾದರೊ ಭೌತ ಪ್ರಪಂಚದ ನಿತ್ಯಸತ್ಯಗಳ ನಿರ್ಧಾರ ಹಾಗೂ ಹೇಳಿಕೆ ಎಂದು ದೃಢನಂಬಿಕೆ ಆಗ ಬೇರೂರಿತ್ತು. ಅಂದಿನ ಆ ಕಾಲಧರ್ಮಕ್ಕೆ ಅಂಜಿದ, ಶಂಕಿಸಿದ ಈತ ತನ್ನ ಪರಿಶೋಧನೆಗಳನ್ನು ಪ್ರಕಟಗೊಳಿಸಲಿಲ್ಲ.[೩][೪] ತನ್ನ ಗಣಿತಮಿತ್ರರಲ್ಲಿ ಈ ಬಗ್ಗೆ ವಿಚಾರ ವಿನಿಮಯ ಮಾಡುತ್ತಿದ್ದ ಅಷ್ಟೇ. ಈ ಗುಂಪಿಗೆ ಸೇರಿದ ಜರ್ಮನ್ ಗಣಿತವಿದ ಜೆ.ಎಂ.ಸಿ. ಬಾರ್ಟಲ್ಸ್ ಮತ್ತು ಆಸ್ಟ್ರಿಯದ ಉಲ್ಫ್‌ಗ್ಯಾಂಗ್ ಬೋಲ್‌ಯಾಯ್ ಮುಖ್ಯರಾದವರು.

ಈ ವಿಷಯದಲ್ಲಿ ಪರಸ್ಪರ ಸ್ವತಂತ್ರವಾಗಿ ಸಂಶೋಧನೆಗಳನ್ನು ನಡೆಸಿದ ಇನ್ನಿಬ್ಬರೆಂದರೆ ಬಾರ್ಟಲ್ಸ್‌ನ ಶಿಷ್ಯ[೫] ಲೊಬಾಚೆವ್‌ಸ್ಕಿ (1793-1856) ಮತ್ತು ಉಲ್ಫ್‌ಗ್ಯಾಂಗ್ ಬೋಲ್‌ಯಾಯ್‍ನ ಮಗ ಯೋಹಾನ್ ಬೋಲ್‌ಯಾಯ್ (1802-60).[೬] ಇವರಿಬ್ಬರೂ ಗೌಸನಂತೆಯೇ ದತ್ತಬಿಂದುವಿನ ಮೂಲಕ ದತ್ತರೇಖೆಗೆ ಅವುಗಳ ಸಮತಲದಲ್ಲಿ ಒಂದಕ್ಕಿಂತ ಹೆಚ್ಚು ಸಮಾಂತರ ರೇಖೆಗಳಿರುತ್ತವೆ ಎಂದು ಭಾವಿಸಿ, ಇದೇ ತೆರನ ಅಯೂಕ್ಲಿಡೀಯ ಜ್ಯಾಮಿತಿಗಳನ್ನು ರಚಿಸಿದರು.

ರೀಮಾನೀಯನ್ ಜ್ಯಾಮಿತಿ[ಬದಲಾಯಿಸಿ]

ಅನಂತರ ಜರ್ಮನಿಯ ಗಣಿತವಿದ ಬರ್ನ್‌ಹಾರ್ಡ್ ರೀಮಾನ್ (1926-66) ಮತ್ತೊಂದು ಬಗೆಯ ಅಯೂಕ್ಲಿಡೀಯ ಜ್ಯಾಮಿತಿಯನ್ನು ನಿರ್ಮಿಸಿದ. ಯೂಕ್ಲಿಡನ ಮೂಲತತ್ತ್ವಗಳಲ್ಲಿ ಈತ ಮೂರು ಬದಲಾವಣೆಗಳನ್ನು ಮಾಡಿದ.

  1. ಯೂಕ್ಲಿಡ್ ಅಭಿಗೃಹೀತ (1)ಕ್ಕೆ ಪ್ರತಿಯಾಗಿ ಎರಡು ಬಿಂದುಗಳ ಮೂಲಕ ಕನಿಷ್ಠಪಕ್ಷ ಒಂದಾದರೂ ಸರಳರೇಖೆಯಿರುತ್ತದೆ.
  2. ಯೂಕ್ಲಿಡ್ ಅಭಿಗೃಹೀತ (2)ಕ್ಕೆ ಪ್ರತಿಯಾಗಿ ಸರಳರೇಖೆಗಳಿಗೆ ಆದ್ಯಂತವಿಲ್ಲ ಮತ್ತು ಅವುಗಳ ಉದ್ದ ಸಾಂತ.
  3. ಯೂಕ್ಲಿಡ್ ಅಭಿಗೃಹೀತ (5)ಕ್ಕೆ ಪ್ರತಿಯಾಗಿ ಯಾವ ಎರಡು ಸರಳರೇಖೆಗಳೂ ಪರಸ್ಪರ ಸಂಧಿಸುತ್ತವೆ.

ಉಳಿದವನ್ನು ಯೂಕ್ಲಿಡ್‌ನಲ್ಲಿರುವಂತೆಯೇ ಇರಿಸಿಕೊಂಡು ಈ ಹೊಸ ಬಗೆಯ ಅಯೂಕ್ಲಿಡೀಯ ಜ್ಯಾಮಿತಿಯನ್ನು ನಿರ್ಮಿಸಿದ. ಇದಕ್ಕೆ ಈಗ ರೀಮಾನೀಯನ್ ಜ್ಯಾಮಿತಿ ಎಂದೇ ಹೆಸರಿದೆ. ಇದರ ಪ್ರಕಾರವಾಗಿ ಒಂದು ತ್ರಿಕೋನದಲ್ಲಿ ಮೂರು ಒಳಕೋನಗಳ ಮೊತ್ತ ಯಾವಾಗಲೂ ಎರಡು ಲಂಬಕೋನಗಳಿಗಿಂತ ಅಧಿಕವಾಗಿರುತ್ತದೆ. ಈ ವ್ಯತ್ಯಾಸಕ್ಕೆ ತ್ರಿಕೋನದ ಗೋಳಾಧಿಕ್ಯ (ಸ್ಫೆರಿಕಲ್ ಎಕ್ಸೆಸ್) ಅವೆರಡರ ಮೂಲಕ ನಿರ್ದಿಷ್ಟವಾದ ಸರಳರೇಖೆ. ರೀಮಾನೀಯನ್ ಜ್ಯಾಮಿತಿಯಲ್ಲೂ, ಗೌಸ್, ಲೊಬಾಚೆವ್‌ಸ್ಕಿಗಳ ಜ್ಯಾಮಿತಿಯಲ್ಲೂ ಯಾವ ಎರಡು ತ್ರಿಕೋನಗಳಲ್ಲೂ ಒಂದರ ಕೋನಗಳು ಇನ್ನೊಂದರ ಕೋನಗಳಿಗೆ ಪರಸ್ಪರ ಸಮವಾಗಿದ್ದರೆ ತ್ರಿಕೋನಗಳೇ ಸರ್ವತಾಸಮ (ಕಾನ್‌ಗ್ರುಯಂಟ್) ಎಂಬುದು ಸ್ಪಷ್ಟ. ಆದರೆ ಯೂಕ್ಲಿಡೀಯ ಜ್ಯಾಮಿತಿಯಲ್ಲಿ ಅಂಥ ತ್ರಿಕೋನಗಳು ಸಮಕೋನೀಯವಾಗಿರಬಹುದೇ ಹೊರತು ಸರ್ವತಾಸಮವಾಗಿರಬೇಕಾಗಿಲ್ಲ. ಉದಾಹರಣೆಗೆ, ಒಂದು ದೊಡ್ಡದು ಆಗಿರಬಹುದು; ಇನ್ನೊಂದು ಚಿಕ್ಕದಾಗಿರಬಹುದು; ರೀಮಾನ್‌ನ ಜ್ಯಾಮಿತಿ ಐನ್‌ಸ್ಟೈನ್ ಪ್ರತಿಪಾದಿಸಿದ ಸಾಪೇಕ್ಷತಾವಾದದ ನಿರೂಪಣೆಯಲ್ಲಿ ಅತ್ಯಂತ ಉಪಯುಕ್ತವೆನಿಸಿದೆ.

ಉಲ್ಲೇಖಗಳು[ಬದಲಾಯಿಸಿ]

  1. ೧.೦ ೧.೧ De Risi 2013.
  2. Fitzpatrick 1964, p. 323.
  3. In the letter to Wolfgang (Farkas) Bolyai of March 6, 1832 Gauss claims to have worked on the problem for thirty or thirty-five years (Faber 1983, p. 162). In his 1824 letter to Taurinus (Faber 1983, p. 158) he claimed that he had been working on the problem for over 30 years and provided enough detail to show that he actually had worked out the details. According to Faber (1983, p. 156) it wasn't until around 1813 that Gauss had come to accept the existence of a new geometry.
  4. Greenberg 2008, p. 243-244
  5. Victor J. Katz. A history of mathematics: Introduction. Addison-Wesley. 2009. p. 842.
  6. Stephen Hawking. God Created the Integers: The Mathematical Breakthroughs that Changed History. Running Press. 2007. pp. 697–703.

ಹೊರಗಿನ ಕೊಂಡಿಗಳು[ಬದಲಾಯಿಸಿ]